STF43N60DM2

TO-220FP

D(2)

S(3)

Figure 1: Internal schematic diagram

N-channel 600 V, 0.085 Ω typ., 34 A MDmesh[™] DM2 Power MOSFET in a TO-220FP package

Datasheet - production data

Order code	V _{DS} @ T _{jmax.}	R _{DS(on)} max.	I _D	Ρτοτ
STF43N60DM2	650 V	0.093 Ω	34 A	40 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

• Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmeshTM DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{DS(on)}$, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

AM01476v1_no_tab

Order code	Marking	Package	Packing
STF43N60DM2	43N60DM2	TO-220FP	Tube

G(1) O

DocID026789 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	
5	Revisio	n history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
ال0 ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	34	А
ID	Drain current (continuous) at T _{case} = 100 °C	21	A
I _{DM} ⁽²⁾	Drain current (pulsed)	136	А
P _{TOT}	Total dissipation at T _{case} = 25 °C	40	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/IIS
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; $T_C = 25$ °C)	2500	V
T _{stg}	Storage temperature	55 to 150	°C
Tj	Operating junction temperature	-55 to 150	°C

Notes:

 $^{\left(1\right) }$ limited by maximum junction temperature.

 $^{\left(2\right) }$ Pulse width is limited by safe operating area.

 $^{(3)}$ I_{SD} \leq 34 A, di/dt=900 A/µs; V_{DS} peak < V_{(BR)DSS}, V_{DD} = 400 V.

⁽⁴⁾ $V_{DS} \le 480 \text{ V}.$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.32	°C 111
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive	6	А
E _{AS} ⁽¹⁾	Single pulse avalanche energy	800	mJ

Notes:

 $^{(1)}$ starting T_{j} = 25 °C, I_{D} = $I_{AR},\,V_{DD}$ = 50 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_D = 1 mA	600			V
	Zoro goto voltago droin	$V_{GS} = 0 V, V_{DS} = 600 V$			1	
I _{DSS}	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 600 V, T_{case} = 125 °C			100	μA
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±5	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 17 \text{ A}$		0.085	0.093	Ω

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2500	-	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	120	-	рF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	3	-	P1
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 480 V, V_{GS} = 0 V	-	200	-	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	4	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 34 A,	-	56	•	
Q_gs	Gate-source charge	V _{GS} = 10 V (see <i>Figure 15:</i>	-	13	•	nC
Q_{gd}	Gate-drain charge	"Gate charge test circuit")	-	30	-	

Table 6: Dynamic

Notes:

 $^{(1)}$ $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

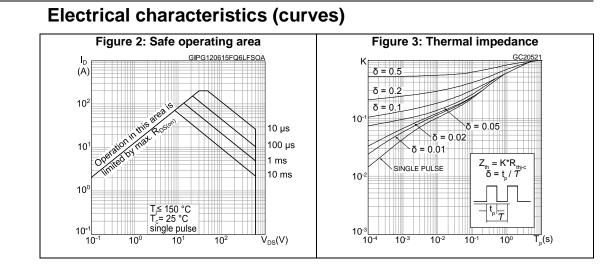
Table 7: Switching times

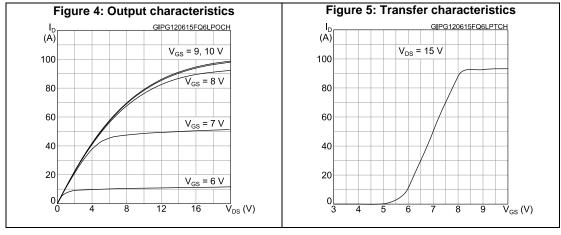
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 25 \text{ A}$	-	29	-	
tr	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$ (see Figure 14: "Switching	-	27	-	
t _{d(off)}	Turn-off delay time	times test circuit for	-	85	-	ns
t _f	Fall time	resistive load" and Figure 19: "Switching time waveform")	-	6	-	

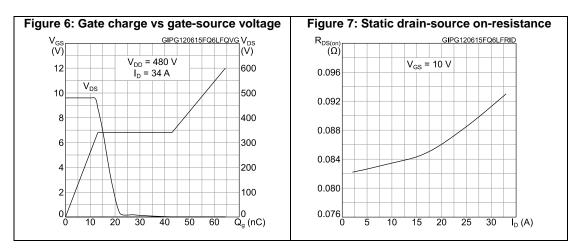
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		34	А
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		136	А
V _{SD} ⁽³⁾	Forward on voltage	V_{GS} = 0 V, I_{SD} = 34 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 34 A,	-	120		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/µs, V _{DD} = 60 V (see <i>Figure 16:</i>	-	0.6		μC
I _{rrm}	Reverse recovery current	"Test circuit for inductive load switching and diode recovery times")	-	10.4		A
t _{rr}	Reverse recovery time	I _{SD} = 34 A,	-	240		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/ μ s, V _{DD} = 60 V, T _j = 150 °C (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	2.4		μC
	Reverse recovery current		-	20.5		A

Table 8:	Source-drain	diode

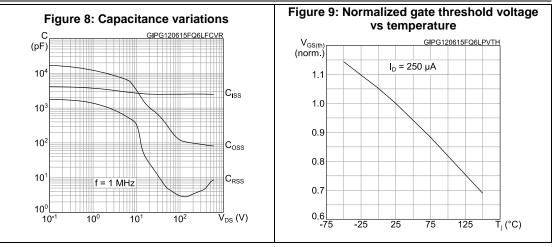
Notes:

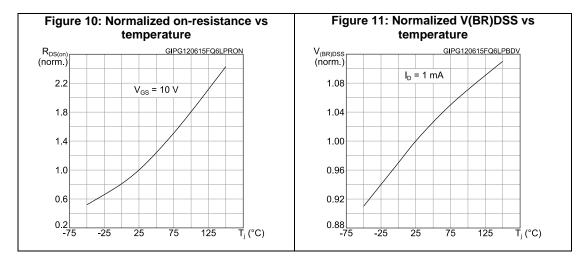

 $^{\left(1\right) }$ Limited by maximum junction temperature.

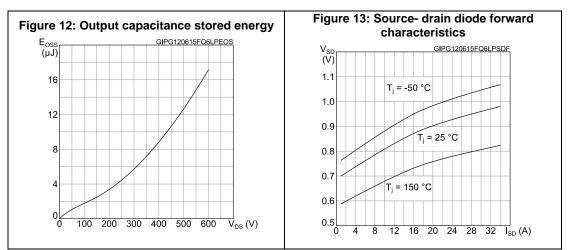

⁽²⁾ Pulse width is limited by safe operating area.


 $^{(3)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

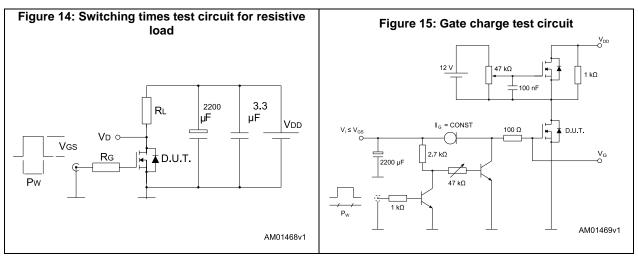
2.1

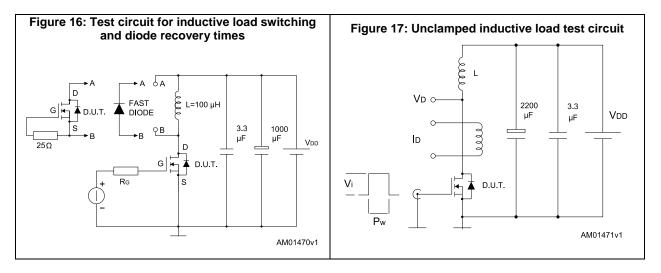


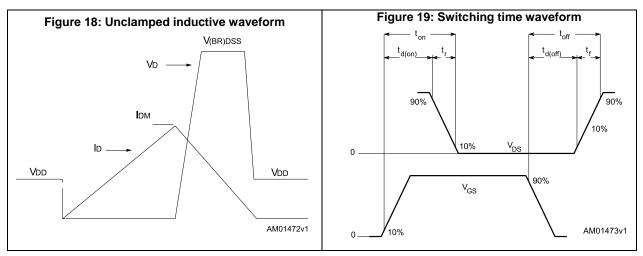




Electrical characteristics

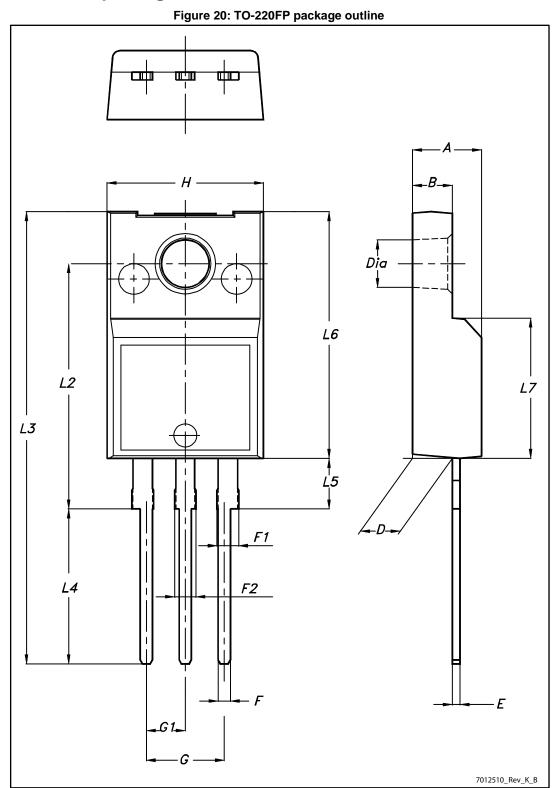






57

3 Test circuits


51

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

STF43N60DM2

Package information

Table 9: TO-220FP	nackado	mechanical data
	package	mechanical uala

Dim.	mm			
	Min.	Тур.	Max.	
А	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

5 Revision history

Date	Revision	Changes	
06-Aug-2014	1	First release.	
01-Jul-2015	2	Text and formatting changes throughout document Datasheet promoted from preliminary data to production data On cover page: - updated title description - updated features table In Section Electrical ratings: - updated Table Absolute maximum ratings - updated Table Avalanche characteristics In Section Electrical characteristics: - updated and renamed Table Static (was On/off states) - updated Table Dynamic - updated Table Switching times - updated Table Source-drain diode Added Section 2.1 Electrical characteristics (curves)	

STF43N60DM2

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

